

Managing a Late Spring James Daniel, Philip Pengelly

SPRING Management

Introduction

- 1. Grazing Management Aims
- 2. Review of current feed supply/demand
- 3. Next 2-3 weeks

ROLE OF FARM MANAGER

Supply the right <u>Quantity</u> and <u>Quality</u> of feed to animals at the right time.

How?

By Knowing and Managing Feed Supply and Animal Demand

Monitoring Pasture Covers

Grazing Management – April/May

SPRING AIMS

Feed stock to ensure peak lactation

Increase lamb/calve
weaning weights

Improve BCS of ewes/cows at weaning

• Increase mating %

Sucker Cow – Example Lactation Curve

Current Position

Slide 9

Current Position

Colder than average for April

Soil Temperature currently limiting pasture growth:

- Grass grows above 5 Degrees
- Clover grows above 8 Degrees

winter fool's spring second winter spring of deception third winter mud season actual spring summer

The Lizard	
Precipitation	(daily total)

© 2021 UKCEH

Air temperature (Deg Celsius)

HISTORY

0/00/17515

Management

Slide 15

ANIMAL DEMAND

LSU/ha	Demand (kg DM/ha)	Ewes/ha	Ewes/acre	Cows/ha	Cows /acre	Growing cattle/ha	Growing cattle/acre
0.2	4	2	1	0.3	0.1	0.6	0.2
0.4	8	4	1	0.5	0.2	1.2	0.5
0.6	12	5	2	0.8	0.3	1.8	0.7
0.8	16	7	3	1.1	0.4	2.4	1.0
1	20	9	4	1.3	0.5	2.9	1.2
1.2	24	11	4	1.6	0.6	3.5	1.4
1.4	28	13	5	1.9	0.8	4.1	1.7
1.6	32	15	6	2.1	0.9	4.7	1.9
1.8	36	16	7	2.4	1.0	5.3	2.1
2	40	18	7	2.7	1.1	5.9	2.4
2.2	44	20	8	2.9	1.2	6.5	2.6
2.4	48	22	9	3.2	1.3	7.1	2.9
2.6	52	24	10	3.5	1.4	7.6	3.1

Suckler Cattle

Bale of Silage = 650kgFW @ 40%DM = 250kgDM

Bale of Silage = 650kgFW 40%DM = 250kgDM

Suckler Cows & Calves Demand = 42kgDM/ha Growth = 25kgDM/ha Difference = 17kgDM/ha

Bale of Silage = 650kgFW 40%DM = 250kgDM

Suckler Cows & Calves Demand = 42kgDM/ha Growth = 25kgDM/ha Difference = 17kgDM/ha

Grazing Area = 20.6ha Deficit = 20.6ha x 17kgDM/ha

- = 350kgDM
- = 1.5 bales /day
- = 7kgDM/cow

Ewes and Lambs

Lambs

- → LAMBS EAT PASTURE FROM AROUND TWO WEEKS OLD
- → The lamb's rumen is fully capable of digesting pasture by three weeks of age.
- → LAMB GROWTH RATES USUALLY DECLINE DURING LACTATION
- → Lamb growth peaks somewhere between day 20 and 40 of lactation (at an average of 250-350g/ head/day).
- → Lambs can partially compensate for lower milk availability by consuming more pasture but only if quality is high (>11MJME/kgDM e.g. leafy green grass, legumes

Ewes & Lambs Demand = 40kgDM/ha Growth = 25kgDM/ha Difference = 15kgDM/ha

Ewes and Lambs Demand = 40kgDM/ha Growth = 25kgDM/ha Difference = 15kgDM/ha

- Grazing Area = 21ha Deficit = 21ha x 15kgDM/ha = 315kgDM
 - = 0.9kgDM/Ewe
 - ~1kg Concentrate/ewe/day ~4.5kg Fodder beet/ewe/day

lambs >4 weeks onld - option to feed creep?

Cover Heights

Pasture Cover Heights for High Performance

		(kgDM/ha)			
	Average Weight (kg)	Min	Optimum	Max	
Dairy Cow	500	2200	2600	3000	
Suckler Cow	650	2000	3000	3500	
Growing Cattle	350	1800	2400	2800	
Ewe (Twins)	70	1600	2200	2600	
Weaned Lamb	32	1600	2000	2500	

Dairy

Target Grass

Silage

Home | Print Full Wedge Report | Print 1 Page Report | Video Tutorial | Grass Data Entered

e Measured	26/04/2021	×		No.	Actual Grass	Meal	Sil
a woo	38.7 (over 7 d	days)	Spring Milkers	0	0	0	0
Growin	(36.6) (1)		Autumn Milkers	301	8	2.55	6
	1907		Dry Cows	0	0	0	0
	301		0-1 Year Old	0			0
На	3.55			0			
and / Day	2408		1-2 Year Old	0	0	0	0
and / Ha	28.4		2+ Year Old	0	0	0	0
g / Ha	47.3 🕦						
Area	38.6						
ther	0mm, 15°		Cow Intakes				
r / LU	131.55						
/ Cow / Day	11.87 (05/08)						
IS / Cow	1.04		Target Pre-Graze Cover		(i)		
k Quality	F4.7% / P3.8%		Rotation Length	42	Rotation Last Week: 32.1		
Ms/Ha YTD	0 (81.76 Ha)		Post Grazing Cover	1500	-		
ort Term Silage	0 (0Ha)	<u>Reset</u>	Project wedge in			ing Crowth	Pata
ong Term Silage	0 (0Ha)	<u>Reset</u>	i Tojoot wougo in	L	Days, 08	ing Growth	Nate
Area Unmeasured	5.88 Ha						

Grass Wedge Data View

Dairy

- Buffer Feeding
- Types
- Timing
- Bedding

Next 2-3 Weeks

LOOKING AHEAD

Moisture may become limiting

- → Maintain AFC above 1800 kgDM/ha (1950 kgDM/ha dairy).
- → Want to "see" 20 days ahead.
- → Monitor pasture covers weekly.

LOOKING AHEAD

- → Continue to feed supplement to reduce demand (most economic option).
- → Review weather forecast – what is growth likely to be over the next 10-14 days?
- → If farm covers are lower than target consider preparing to use nitrogen fertiliser.

Nitrogen Fertiliser

Nitrogen fertiliser only effective <u>IF</u> Soil Temperature & Soil Moisture are <u>NOT</u> limiting!

- Monitor soil temperature closely measuring at mid-day will provide the average temperature
- → At a soil temp of 10 degrees:
- → Urea needs >10mm rain within 3 days of spreading to avoid high losses.
- → Ammonia Nitrate more stable and normally needs ~4mm to dissolve
 - Apply 20-30kg N/ha only. (20-30 Units/Acre)
 - Limit N used if you have medium to low stock rate as it has a prolonged effect (50-60 days) and so could cause unwanted surplus in May/June.

